4.2.2

By definition its arclength is given by
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4.16.2

(a) Since T'(t) - T'(t) = 1, we have after differentiating that 27°(¢) - T"(t) = 0,
which gives the desired result.

(b) We have T(t) = (1) /|| (0)]| = (1) (€ (8) - (1) 2.

Assuming that
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We get finally that
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Another approach to this problem would be to write ¢(t) = (z(t), y(t), 2(t))
and do the corresponding calculations.

5.2.3

(a)

1 1 1 /.4
4 2 _ 1 _ 13
/_I/O(xy+y)dydx—/_l(2 +3)d.7:—15

/2 ol /2 1
/ / (ycosz + 2)dy dx:/ (COSI—FQ)dx:——HT
0 0 0 2 2

(c) Taking into account that the primitive of xe® is ze® — e we have that
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(d) Now assuming that the primitive of logy is ylogy — y, we have
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5.1.6

By Cavalieri’s Principle, the volume is given by

V= /07A(h)dh

Where A(h) is the area of the section of the figure at height h. Since this
section is always a rectangle of dimensions 5 x 3, we have that A(h) = 15 for
all h, then
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5.1.10

Note that y is negative at all points of the rectangle, therefore we can sub-
stitute |y| by —y.

Then we have

—2 0 1 211 A A
—ycos—mx | dy do = —cos—-mx |dr = |—sin—| = —
0 _1 4 0 2 4 2m 2|,

5.2.8

The region is bounded by 2 =0, z =1,y =0,y =1, 2 = 0 and z = 22 + y*.
This means that
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5.2.9

We have that

1= [ [r@stids ay = [ d / U @gw)lde dy
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In the integral over x, the term g(y) acts like a constant and hence we can
take it out of the integral leaving the following equality

I= /cdg(y) Vabg(x)dfv] dy

But now all the integral over x is constant on y, and therefore we can take
it out of the integral, leaving the desired identity.

5.3.3
(a)
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The region is the following:
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Which is both x and y-simple.

(b)
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The region is
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Which is again both x and y-simple.

(c)
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In this case the region is
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Which is again simple.
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(d) Finally

Here our region is
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Which is simple as well.
5.4.8

The coordinates of the triangle are (0,0), (10/3,0) and (0,5/2). This means
that « ranges from 0 to 10/3 while y ranges from 0 to (10 —3x)/4. This gives

o 5 ,10—3z (10— 32)3
//ery YdA = / / (2 +y? dydx—/o 7 RS dz

56
Which is just the integral of a polynomial, which gives 6 ~ 12.056.

5.4.10
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Note that the region is the same as in 3) (a).



